NASA/TM-2003-212421

Team Software Development for
Aerothermodynamic and
Aerodynamic Analysis and Design

N. Alexandrov, H. L. Atkins, K. L. Bibb, R. T. Biedron, M. H. Carpenter, P. A. Gnoffo,

D. P. Hommond, W. T. Jones, W. L. Kleb, E. M. Lee-Rausch, E. J. Nielsen, M. A. Park,
V. V. Raman, T. W. Roberts, J. L. Thomas, V. N. Vatsa, S. A. Viken, J. A. White, and
W. A. Wood

Langley Research Center, Hampton, Virginia

November 2003

The NASA STI Program Office ... in Profile

Since its founding, NASA has been dedicated
to the advancement of aeronautics and space
science. The NASA Scientific and Technical
Information (STI) Program Office plays a
key part in helping NASA maintain this
important role.

The NASA STI Program Office is operated
by Langley Research Center, the lead center
for NASA’s scientific and technical
information. The NASA STI Program Office
provides access to the NASA STI Database,
the largest collection of aeronautical and
space science STI in the world. The Program
Office is also NASA’s institutional
mechanism for disseminating the results of
its research and development activities.
These results are published by NASA in the
NASA STI Report Series, which includes the
following report types:

e TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results
of NASA programs and include extensive
data or theoretical analysis. Includes
compilations of significant scientific and
technical data and information deemed to
be of continuing reference value. NASA
counterpart of peer-reviewed formal
professional papers, but having less
stringent limitations on manuscript length
and extent of graphic presentations.

e TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest, e.g.,
quick release reports, working papers, and
bibliographies that contain minimal
annotation. Does not contain extensive
analysis.

¢ CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

CONFERENCE PUBLICATION.
Collected papers from scientific and
technical conferences, symposia, seminars,

or other meetings sponsored or
co-sponsored by NASA.

SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

TECHNICAL TRANSLATION. English-
language translations of foreign scientific
and technical material pertinent to
NASA’s mission.

Specialized services that complement the
STT Program Office’s diverse offerings
include creating custom thesauri, building
customized databases, organizing and
publishing research results ... even
providing videos.

For more information about the NASA STI
Program Office, see the following:

Access the NASA STI Program Home
Page at http://www.sti.nasa.gov

E-mail your question via the Internet to
help@sti.nasa.gov

Fax your question to the NASA STI Help
Desk at (301) 621-0134

Phone the NASA STT Help Desk at (301)
621-0390

Write to:

NASA STI Help Desk

NASA Center for AeroSpace Information
7121 Standard Drive

Hanover, MD 21076-1320

NASA/TM-2003-212421

Team Software Development for
Aerothermodynamic and
Aerodynamic Analysis and Design

N. Alexandrov, H. L. Atkins, K. L. Bibb, R. T. Biedron, M. H. Carpenter, P. A. Gnoffo,

D. P. Hommond, W. T. Jones, W. L. Kleb, E. M. Lee-Rausch, E. J. Nielsen, M. A. Park,
V. V. Raman, T. W. Roberts, J. L. Thomas, V. N. Vatsa, S. A. Viken, J. A. White, and
W. A. Wood

Langley Research Center, Hampton, Virginia

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

November 2003

Acknowledgment

The authors would like to thank Charles Miller of the Aerothermodynamics Branch at
NASA Langley Research Center, Hampton, Virginia, and Susan Hurd of NCI Information
Systems, Inc., Hampton, Virginia, for enduring multiple manuscript reviews of this work.

The use of trademarks or names of manufacturers in this report is for accurate reporting and does not
constitute an offical endorsement, either expressed or implied, of such products or manufacturers by the
National Aeronautics and Space Administration.

Available from:

NASA Center for AeroSpace Information (CASI) National Technical Information Service (NTIS)
7121 Standard Drive 5285 Port Royal Road
Hanover, MD 21076-1320 Springfield, VA 221612171

(301) 621-0390 (703) 605-6000

Abstract

A collaborative approach to software development is described. The approach
employs the agile development techniques: project retrospectives, Scrum sta-
tus meetings, and elements of Extreme Programming to efficiently develop a
cohesive and extensible software suite. The software product under develop-
ment is a fluid dynamics simulator for performing aerodynamic and aerother-
modynamic analysis and design. The functionality of the software product
is achieved both through the merging, with substantial rewrite, of separate
legacy codes and the authorship of new routines. Examples of rapid im-
plementation of new functionality demonstrate the benefits obtained with
this agile software development process. The appendix contains a discus-
sion of coding issues encountered while porting legacy FORTRAN 77 code to
FORTRAN 95, software design principles, and a FORTRAN 95 coding stan-
dard.

Introduction

The objective of the Fast Adaptive AeroSpace Tools (FAAST) program at
NASA Langley Research Center is to develop fluid dynamic analysis and de-
sign tools (ref. 1). The four primary elements in FAAST are CAD-to-Grid
Methods, High Energy Flow Solver Synthesis (HEFSS), Optimally Convergent
Algorithms, and Efficient Adjoint Design Methods. This paper primarily fo-
cuses on the software development practices adopted by the HEFSS and design
elements of FAAST.

HEFSS aims to develop an unstructured-grid flow solver for hypersonic flow
applications. This solver is to have the same chemical, thermal, and turbulence
modeling capabilities as are presently available in the Langley structured-grid
flow solvers LAURA (ref. 2) and VULCAN (ref. 3). The switch to unstructured-
grid technologies is seen as an enabling capability to efficiently handle complex
geometries and is synergistic with the CAD-to-Grid Methods” unstructured-
grid generation and adaptation efforts (refs. 4 and 5). This unstructured-
grid hypersonic flow solver is to be obtained by extending the capabilities of
the existing unstructured-grid transonic flow solver FUN3D (ref. 6). Factors
related to the choice of FUN3D as the baseline unstructured-grid flow solver
are discussed in appendix A on page 25.

The complexity of HEFSS exceeds that of prior fluid dynamic development
projects at Langley and is the first tool developed by a sizable team.! The
prior development of computational fluid dynamic (CFD) codes at Langley
and at the former, co-located Institute for Computer Applications in Science

1See ONERA's elsA project (ref. 7) and DLR’s MEGAFLOW project (ref. 8) for other
examples of team CFD development.

Table 1. CFD Code, Architect, and Application Domain

CrL3D Rumsey/Biedron Structured-grid (SG) aerodynamics
LAURA Gnoffo SG hypersonic aerothermodynamics
VULCAN White SG hypersonic propulsion

TLNS3D Vatsa SG aerodynamics

OVERFLOW Buning Overset SG aerodynamics

Usm3D Frink Unstructured-grid (UG) aerodynamics
Nsu3D Mavriplis UG aerodynamics

Fun3D Anderson UG aerodynamics and design

FELISA Peraire UG hypersonic aerodynamics

and Engineering (ICASE) has consisted of one or two people working focused
applications or algorithms. Even when more people contributed to the devel-
opment of a code, one person contributed the bulk of the code and served as
gatekeeper for any changes. Examples of this paradigm are listed in table 1.
There is overlap in the capabilities of these codes because their development
processes were all sufficiently rigid as to make it cheaper to develop an inde-
pendent code with new functionality rather than to extend an existing code.
HEFss aims to break this cycle by developing an extensible product.

Heavyweight software engineering processes,? which accommodate teams
of tens of hundreds of programmers working with a relatively well-defined set
of requirements, were initially considered but rejected as being too restrictive
for a research team of about 10 people. However, the emerging agile soft-
ware development movement? is perceived to be well suited to the uncertain
requirements and size of teams typically present in a research environment.
The agile movement views software development as an empirical, rather than
defined, process (ref. 9). To manage the empirical process, agile methods in-
corporate rapid feedback mechanisms to enable constant steering and place a
renewed emphasis on the heart of software development—software craftsman-
ship (ref. 10).

Making the switch from a one-code, one-developer paradigm to a team-
based approach is a significant culture change, but the ambitious goals of
HEFSs provided a strong motivation to look past skepticism and overcome
resistance to change. The scope of HEFSS required a group of developers
(initially 12 people at 25 to 100 percent work levels) with diverse areas of
expertise to collaborate on the software. The 18-month milestone for the
project was to demonstrate the synthesis of the structured-grid physical models
on a cylinder case by using an unstructured-grid discretization. In addition,
the existing functionality of the baseline FUN3D code was to be maintained

2See www.sei.cmu.edu/cmm for example.
3See www.agilealliance.org.

http://www.sei.cmu.edu/cmm/
http://www.agilealliance.org

within the HEFSS code base. To compound matters, there was a lack of team
software development expertise. This critical ignorance was overcome through
consultant-led workshops, an invited lecturer series, a support contractor, and
two team members aggressively pursuing software development best practices
training (refs. 11 and 12).

This paper documents how the HEFSS team adapted and incorporated agile
software development practices to develop the next generation CFD applica-
tion software. No claims are made that the correct processes were choosen
or that the current processes have fully matured. It is difficult to objectively
gauge the HEFSS development process, but the project is ongoing, morale is
high, its practices have been adopted by other teams, it was included in a
group achievement award, and the local software engineering process group is
using it as a model. The experience and lessons learned are offered as a case
study, which may be useful to others with similar backgrounds and goals.

Team Obstacles

Before embarking on a discussion of team software development, a synop-
sis of typical barriers to team formation and viability is necessary. Without
providing a fertile team environment, the collaborative software development
techniques laid out in the next section will not work.

According to reference 13, a true team can be identified by its low turnover,
its strong sense of identity, its sense of eliteness, its joint ownership of the prod-
uct, and its members deriving more enjoyment from their work than expected
from the nature of the work itself. Unfortunately, while there is an array
of team-building techniques available, there is no simple recipe for creating
cohesive teams.

Meanwhile, methods known to destroy teams are well documented. Briefly,
barriers to team formation and ongoing viability include these: lack of trust,
the promotion system, defensive management, bureaucracy, physical separa-
tion, fragmentation of people’s time, quality reduction of the product, phony
deadlines, and clique control. For expanded discussion of these issues, consult
references 13 and 14.

Collaborative Software Development

CFD software development at Langley has traditionally been performed in
a rather unconstrained, self-governed environment. As mentioned earlier,
most codes have typically been developed by one, or perhaps two researchers.
This paradigm has worked relatively well and has produced software packages
widely used by industry and academia.

Unfortunately, such software development strategies often result in codes
that are complex and burdensome to maintain, and frequently subsequent
working groups produce distinct versions of the code that are often incompat-
ible with each other and previously released versions. Moreover, cohesiveness
and portability are typically lost, as additional researchers contribute to the
code, using their own coding style and practices.

In contrast to this ad hoc approach to code development, the HEFSS team
sought to incorporate the software industry’s best practices, not only because
of the challenges of working as a cohesive team, but also to find methods
which would extend the life cycle of the new code. Everyone on the team had
experienced the pain of adding new capability to a large, existing code which
was developed in an ad hoc manner. Even a seemingly innocuous bug fix was
unnerving because there was no repeatable method to discover whether the
fix would break existing capability in some subtle manner.

A survey of industry best practices for software development was con-
ducted, which included sponsoring a local ICASE lecture series entitled “Mod-
ern Programming Practices.”* Meanwhile, two pathfinder projects were con-
ducted to gain hands-on experience. Detailed discussion and extensive refer-
ence lists are available in references 11 and 12.

As described earlier, the emerging body of agile software development
methodologies was determined to have the best fit with the inconstant na-
ture of a scientific research environment. Specifically, Extreme Programming
(XP) (ref. 15) appeared to be the most mature, although at the time, docu-
mentation was limited to a few websites.? In addition, recent experience with
ISO 9001 edicts tended to steer the team away from defined process man-
agement techniques implicit in methodologies like the Capability Maturity
Model® (ref. 16) and its associated Team Software Process™ (ref. 17).

The collection of collaborative software development practices described
herein evolved from weekly meetings in which the challenges and possible so-
lutions were discussed. Issues discussed cover fresh start versus retrofit ver-
sus restructuring of existing code, language selection, coding standards, mod-
ularization and maintainability versus efficiency, acceptance testing, source
code management etiquette,® and documentation. As the HEFSS team ini-
tially struggled with and then embraced new software development practices,
other teams (CAD-to-Grid, Design Optimization) within the FAAST project
adopted many of the same practices.

Specific software development techniques are discussed in the following
sections, namely: XP, project retrospectives, status meetings, other commu-
nication mechanisms, and documentation.

4See www.icase.edu/series/ MPP
Swww.c2.com and www.extremeprogramming.org.
6Source code management etiquette—when source code should and may be committed

to a common repository.

http://www.icase.edu/series/MPP/
http://www.c2.com
http://www.extremeprogramming.org

Extreme Programming

XP is founded on four values: communication, simplicity, feedback, and courage.
It was designed to keep the right communications flowing by employing many
practices that cannot be done without communicating. XP also gambles that
it is better to do a simple thing today and pay a little more tomorrow for any
necessary changes than to do a more complicated thing today that may never
be used; that is, in this universe one cannot “save time.” Meanwhile, XP’s
feedback mechanisms cover many time scales since optimism is an occupa-
tional hazard of programming and feedback is the treatment. Finally, courage
enables one to escape local optima.

Built from this value system, XP consists of 12 practices shown in table 2.
Also shown in the table is the level to which the HEFSS team has adopted each

Table 2. Current Level of XP Adoption

Practice Adoption Comments

Sustainable pace Full No compulsory overtime.

Metaphor Full Using naive metaphor, i.e., CFD jargon.

Coding standards Full See appendix B on page 31.

Collective ownership Full Anyone can change any piece of code.

Continuous integration Full Automated build and test on three computer
architectures.

Small releases Partial A portion of code base is currently export re-
stricted; seeking to relieve this constraint.

Test-driven development Partial FORTRAN 90 unit test framework not widely
used; however, Ruby codes are typically created
using TDD.

Refactoring Partial Performed, but not mercilessly, due to lack of

unit test coverage.

Simple design Partial Upfront, complex design is hard to resist, es-
pecially without strong test-driven development
and refactoring.

Pair programming Partial Practiced, but not exclusively.

On-site customer Partial No outside customer is providing a business per-
spective, currently self-serving as customer for
research products at hand.

Planning game None Have yet to invoke project management side of
XP.

practice. The ensuing sections serve to briefly describe each practice and also
to describe a practice in the context of the HEFSS team. Adjacent to the start
of each section are quotations from reference 15.

Guide all
development with a
simple shared story

of how the whole
system works.

Programmers write
all code in
accordance with
rules emphasizing
communication
through the code.

Sustainable Pace

Formally known as “40-hour week,” the sustainable pace practice probably
ranks the highest on the common sense scale, but it is also the most frequently
violated by managers and developers alike. Since the majority of the research
conducted with the HEFSS project is years from commercial use, compulsory
overtime is simply not part of the working environment.

Metaphor

Employing a system metaphor that all participants can understand facilitates
communication both within the code and within the team. Since all the team
members are familiar with CFD jargon, the naive metaphor is used.

Coding Standards

Coding standards are usually dreaded and met with resistance because they
are seen as adding a superfluous burden. After a brief discussion of the genesis
of HEFSS’s coding standard, several reasons are provided to demonstrate why
a coding standard is not only necessary but actually quite beneficial for a team
software development project.

During the transition of legacy code from FORTRAN 77 to FORTRAN 95,
a rough guess at a coding standard was created and used by the entire team.
Based on this experience, a more detailed revision was created. (See ap-
pendix B on page 31.) One duty of the full-time contractor assigned to the
team is to enforce the coding standard as new content is committed to the
repository. This function is slated to be replaced by an automated agent that
parses the source code.

Given a thoughtfully crafted coding standard, improved source code read-
ability is a natural benefit through consistent indentation, alignment, naming,
and commenting conventions. However, the coding standard must be appro-
priately tailored to the programming language. For example, FORTRAN 95
permits declaring an array variable and later dimensioning it through a sepa-
rate statement. This multiline variable declaration can be hard to follow and
can create confusion, thus prompting a line in the coding standard to place
all attributes of the declaration on a single line, if possible. Another example
is that the variable names of arguments in the calling and called routines do
not have to match. However, retaining the same names for both improves
global comprehension of the code and makes code-generated documentation
more coherent.

A coding standard also serves as a sentinel against the use of vendor-specific
language extensions or depreciated elements of the language that do not lend
themselves to portability across various platforms. For example, FORTRAN 95
does not contain a complete set of intrinsic functions for accessing system-level

Productivity does
not increase with
hours worked; tired
programmers are
less productive
than well-rested
ones.

utilities or timing, but many compiler vendors offer extensions like system()
and etime (), which are tempting but create portability headaches.

Collective Ownership

The ideal situation for team software development occurs when a pair of de-
velopers looks at a given piece of code and does not feel the need to change the
indentation, and so forth, and furthermore cannot recall whether they wrote
the code in the first place. No single developer claims code ownership, yet
all share responsibility; all source code is eligible for changes by any team
member. Using a coding standard is absolutely essential to reach this goal.

Collective code ownership was a completely foreign concept to team mem-
bers prior to this project. Initial acceptance of this philosophy came about
because the original developer of the FuN2D /3D code was no longer at Lang-
ley, and the current “code steward” did not feel comfortable claiming the code
as “his.” Both the software development practices mentioned above and the
tools the team use for effective collaboration have cemented the idea of collec-
tive code ownership to the extent that members feel comfortable changing the
code without asking permission of another developer.

Due to the team-oriented nature of the project and the amount of source
code involved, a widely used source code management system is used, the
Concurrent Versions System (CVS).” CVS oversees a central repository of the
source code and allows each team member to concurrently develop and modify
sections as needed. Any changes or additions to a local working copy can then
be committed to the repository, whereby they will be available to the entire
team.

CVS maintains complete documentation of any changes made during the
course of code development, and previously modified or deleted code can be
resurrected at any time by any member of the team. In addition, the system
allows team members to work on platforms located virtually anywhere. The
use of a software management tool allows for nearly seamless integration of a
number of widely varying research projects and eliminates the need for multiple
branches of a code.®

Continuous Integration

In a team environment that has many developers who all contribute to a code
base on a daily basis, integrating those changes into a common code base
quickly becomes a major undertaking unless new code is integrated and tested
as soon as practical, preferably within a few hours.

7\\’\\'\\'. cvshome. org

8This CVS controlled XTEX document was jointly composed by the team using such an
approach.

Anyone can change
any code anywhere
in the system at
any time.

Integrate and build
the system many
times a day, every
time a task is
completed.

http://www.cvshome.org

Put a simple
system into
production quickly,
then release new
versions on a very
short cycle.

Continuous integration avoids diverging or fragmented development efforts,
in which developers are not communicating with each other about what can
be shared or reused. Simply stated, everyone needs to work with the latest
version of the code base. Making changes to obsolete code causes integration
headaches.

Originally, developers manually ran the HEFSS test suite during code mod-
ification, but not all developers consistently ran the test suite before checking
their code modifications into the repository, so an automated process was
sought. At first the Unix-based cron utility was used to check out a fresh
version of the CVS repository, to compile the suite of codes, and to run regres-
sion tests on three different architectures and compilers every night. However,
the Extreme Programming community soon reminded the HEFSS team that
“[daily builds| are for winning-challenged people who can’t integrate every 5
to 15 minutes and run all the tests at every integration,” and went to a true
continuous integration mode of operation on dedicated machines.

The continuous integration process restarts the build and test process after
each successful set of tests. Test results are automatically logged on a web
server, and failures are e-mailed to all developers listing all CVS commits that
were performed since the last successful build. With this system, errors are
detected within a couple hours, and the integration failure e-mail provides a
strong source of peer pressure on developers to run a range of tests before
committing changes.”

Small Releases

Feedback is the core idea behind the small releases practice. Get the soft-
ware out there and learn from it. Strive to make the transition from pure
software development to software maintenance as quickly as possible. Small
releases are enabled by other practices like simple design, automated testing,
and continuous integration.

The source code management system described previously enables the team
to automatically create releases by merely “tagging” snapshots of the reposi-
tory for which all the tests pass successfully during the continuous integration
cycle. Routinely, the team typically makes several releases throughout any
given day. This snapshot feature also facilitates the management of releases
to outside users by providing accurate technical support tailored specifically
to the exact source code snapshot released to a given party. Unfortunately,
the HEFSS code currently has some restrictions on its external distribution;
however, it is being used in-house by several people (ref. 18).

9See www.martinfowler.com /articles/continuousIntegration.html for more information.

http://www.martinfowler.com/articles/continuousIntegration.html

Test-Driven Development

Since the time to fix a software defect (aka “bug”) scales exponentially with
the time lag between introduction and detection (ref. 19), it is extremely ad-
vantageous to trap defects as early as possible during development.

Previously known merely as “Testing,” this practice has blossomed into
a whole field in itself (ref. 20). Test-driven development within XP has two
components, one centered around developers and the other centered around
customers, or end users. Developers write unit tests so that their confidence in
the code can become part of the code itself, while customers write acceptance
tests so that their confidence in the code’s capabilities can also become part
of the code. These automated tests allow confidence in the code to grow over
time, allowing the code to become more capable of accepting change.

Unit tests are intended to verify small quanta of functionality within a code
and should be automated and run to completion in fractions of a second. The
unit tests serve as a development guide by specifying the desired capability,
interfaces, and expected output of a functional unit. Unit tests also serve as
mobility enablers during code architecture shifts to ensure a safe path was
taken. Mobility allows code to be easily reused and to have functionality
extended while safely maintaining current functionality. Note that in most
cases, there will be more lines of unit test code than actual production code.

Acceptance tests check the interactions between code elements that unit
tests cannot cover and document the existence of a particular code feature.
Preferably, customers write acceptance tests.

Since the HEFSS code contains active research in many different disciplines
that coexist in the same framework, work in one field can introduce errors
in others through the common framework. These errors can go unnoticed if
the code, in part and in whole, is not verified in a repeatable manner. One
well-known approach to finding defects and ensuring that the code produces
repeatable, verified answers is through automated testing.

For example, an unforeseen interaction with module A is introduced by
modifying code in module B. If the problem in module A goes undetected for
a month, it may be difficult to link the problem to an interaction with module
B or to other code modifications made during that month. If the problem
in module A is detected in minutes by an automated testing framework, the
interaction of module A and module B can be clearly identified before other
code modifications cloud the picture.

The current project began with legacy code that did not contain a single
unit test. Because retrofitting an exhaustive set of unit tests to the existing
legacy code was deemed too expensive, the original intent was to introduce unit
tests as new code was added and old code was refactored. To date, however,
unit testing has not been widely adopted by the team despite the creation of

Programmers
continually write
unit tests, which
must run flawlessly
for development to
continue.
Customers write
tests
demonstrating that
features are
finished. Any
program feature
without an
automated test
simply doesn’t
exist.

Programmers
restructure the
system without

changing its
behavior to remove
duplication,
improve
communication,
simplify, or add
flexibility.

a unit testing framework for FORTRAN 95.1¢ Currently, unit tests only cover
a very small percentage of the code base. However, significant unit testing
coverage is being built into Ruby-based wrappers used for testing and grid
adaptation. Additionally, some of the low-level FORTRAN library routines are
becoming test-infected, for example, character-to-number conversion routines
and linear algebra routines.

The acceptance tests for the HEFSS code are a suite of over 240 regression
tests performed by a series of Makefiles. These regression tests simply compare
the convergence history of residual, force, and moment calculations (or other
output appropriate to the code under test) to previously recorded executions
to machine precision (not just 2-3 digits). These results are referred to as
“golden files.” These test fixtures ensure that the current code gives the same
discrete answer as the original golden file. Makefiles were initially selected to
perform these tests because the tests were seen as a natural extension to code
compilation.!’ The compile operations were incorporated into the tests, so the
tests are always performed with an executable file produced from the current
source files. Test cases can be run on an individual basis or as an entire suite.

The current set of acceptance tests for HEFSS was added incrementally to
first cover the legacy functionality of FUN3D and then new functionality, as
it was added to the suite. The Makefiles that perform the tests have become
complex, hard to maintain, and are being replaced in an incremental fashion
with unit-tested Ruby. This unit-tested Ruby framework should be much
easier to maintain and allow more flexibility. The Ruby framework can be
reused to link a number of the codes together to perform complex functions
such as design optimization and grid adaptation, in addition to testing.

Refactoring

To extend a code’s viable lifetime and strive for the simplest design that will
work, developers need lots of practice modifying the design, so that when the
time comes to change the system, they will not be afraid to try it. Constant
refactoring is absolutely essential to keeping the cost-of-change curve from
growing exponentially as time increases. Reference 21 teaches developers how
to refactor and why.

Automated testing, as discussed earlier, is absolutely essential to refactor-
ing. Without a safety net of tests, subtle shifts in the code’s fundamental ar-
chitecture toward a more agile, clean, and understandable design is extremely
difficult and frustrating. Testing allows developers to modify code that they
did not write so that the original developer can be sure that modified routines

10Ty facilitate both the writing and running of unit tests for FORTRAN 95 source code,
a testing framework called FO5UNIT has been developed using Ruby. F95UNIT has a
model similar to the unit-testing frameworks for other languages, e.g., JUnit, PyUnit, Ruby
test/unit.

1Tf the code is modified and needs to be recompiled, it should also be tested.

10

still perform the original purpose correctly, if the appropriate unit tests pass.
This process leads to an environment in which the tests are paramount and
the code can be easily modified to add new functionality, improve speed, or
become more readable.

Due in part to the lack of extensive unit testing in the HEFSS code, many
refactorings are delayed, creating a backlog of work. Occasionally, the team
will tackle some of these tasks, but so far the backlog continues to grow. A
renewed effort at promoting the benefits of test-first programming is being
made within the team by drawing attention to the inefficiencies inherent in
the “Code-n-Fix” style of programming.

Simple Design

Simple design is defined by two ideas: One is the YAGNI principle, otherwise
known as, “you aren’t gonna need it,” and the other is a chant, “do the simplest
thing that could possibly work.” These principles should be internalized and
provide instinctive reactions to “gold plating” or other ideas that do not seem
to fit the current task. A simple design should not contain ideas that are not
used yet but that are expected to be used in the future. However, one should
pay attention to the word “expected.” If you are somehow assured of the
future and that a given idea will be necessary, design with it in mind, but do
not implement it now because you will best know how to add it when the time
comes.

As with refactoring, the lack of unit test coverage within HEFSs code makes
this practice difficult to follow completely. For many developers, it is also
typically contrary to years of prior practice; regardless, the team can now at
least recognize complexity, and several major strides have been made to reduce
existing manifestations.

Pair Programming

The initial reaction to the idea of two people working on the same task at the
same computer at the same time is usually negative. However, this reaction
is typically caused by painful experiences associated with “pair debugging”
or simply misunderstanding the true nature of pair programming itself. Pair
programming is not one person programming while another person watches. It
is more akin to an animated conversation, facilitated by a white board, where
one participant might grab the marker from the other and make a change while
the first is still talking. Pair programming should be highly dynamic, and the
participants should be able to switch “driver” and “navigator” roles at any
point. Besides making programming more fun, pair programming provides an
extensive host of benefits, such as streamlining communication, propagating
knowledge, and continuous code reviews. Pair programming also greatly en-
hances collective code ownership. For a detailed discussion of the art of pair

11

The system should
be designed as
simply as possible
at any given
moment; extra
complexity is
removed as soon as
it is discovered.

All production
code is written
with two
programmers at
one machine.

programming, see reference 22.
Within the HEFSS team, frequent pair programming is highly encouraged
but not mandated. Figure 1 shows an example of a dedicated pair program-

Figure 1. Pair programming station.

ming station which includes adjustable task chairs, an adjustable table, and
multiple styles of wireless keyboards and mice. Note: the dual screens are
attached to a single computer and simply provide more desktop space.'? How-
ever, simply swapping a desk with a table is the essential step toward accom-
modating pair programming.

Pair programming is used for all aspects of code development, for example,
debugging, teaching, refactoring, and adding new features. Intimately involv-
ing a number of researchers at the lowest levels of code development ensures
a relatively high truck number.!® Traditional CFD codes at Langley are de-
veloped by individuals or small teams and most of the resulting code base

12There is rumored to be a study which measured a 70 percent productivity increase for
software developers by simply doubling the screen real estate.

13The truck number is the size of the smallest set of people in a project such that, if all of
them got hit by a truck, the project would be in trouble. See ¢2.com/cgi/wiki?TruckNumber
for further discussion.

12

http://c2.com/cgi/wiki?TruckNumber

has a truck number of 1 or perhaps 2, whereas the current collaborative team
approach yields a value near 10.

On-Site Customer

This XP practice is intended to remove the communication barriers present
in a typical contracted piece of software where a slew of requirements and
specifications are defined up front and then the “code monkeys” are let loose
to grind out the required piece of software. The pitfalls with this sort of
contract negotiation are many, the least of which is that the customers seldom
know what they want before they see a working prototype. By placing an end
user with the team, XP is nearly guaranteed of delivering a relevant, useful
piece of software.

As discussed in reference 12, the scientific research environment often cre-
ates a situation in which the developers are their own customers. This scenario
requires diligent role playing to keep technical and business needs separated.
Currently, the HEFSS team members largely act as their own customers, with
only very minor input from project stakeholders.

The Planning Game

XP uses a four-dimensional space to plan and measure progress: time, cost,
quality, and scope. Scope is typically ignored by many project-planning mech-
anisms, but it plays a central role in XP. The planning game has two levels:
iteration planning and release planning. The basic premise of the planning
game is that business people determine scope, priority, composition of re-
leases, and dates of releases, while technical people provide estimates, design
consequences, the process, and detailed scheduling.

As shown in table 2 on page 5, the HEFSS team has not yet begun using
this practice. However, full-cost accounting practices now being put into place
may force this final XP practice to be invoked.

Project Retrospectives

Sometimes referred to as XP’s “thirteenth practice,” project retrospectives
(ref. 23) are important components of tailoring a process to a given situation.
Every few months, the team takes time to reflect on past events and accom-
plishments. The goal is not faultfinding but learning how to do better in the
future. During these sessions, the team begins with a discussion guided by
the following three questions: what has gone well, what could be improved,
and with what new techniques or tools should the team investigate? Cur-
rently these sessions are not as formal or wide-reaching as some of the formats
presented in reference 23.

13

Include a real, live
user on the team,
available full-time
to answer
questions.

Quickly determine
the scope of the
next release by
combining business
priorities and
technical estimates;
as reality overtakes
the plan, update
the plan.

Scrum Status Meetings

A daily, stand-up meeting is normally associated with XP, but it is not explic-
itly called out as a practice or given much structure except that nobody can sit
during the meeting; it should be short, and it should happen every day before
developers start pair programming. The HEFSS team has adopted a similar,
but more structured status meeting format from another agile methodology,
Scrum (ref. 9).

A Scrum status meeting is held daily by an appointed “Scrum Master” and
lasts no longer than 15 minutes. The meeting has an open attendance policy,
but only team members are allowed to talk. The team members, in turn,
succinctly report three things: what they did since the last meeting, what
they will do by the next meeting, and what got in the way (impediments).
Additional discussion during a Scrum is strictly limited to clarification-related
questions and to note topics that will be discussed at a later time by interested
parties. The Scrum master plays the role of gatekeeper and takes notes. Later,
the Scrum master compares performance with past commitments and follows
up on situations that appear to be stalled. Most importantly, the Scrum
master is responsible for removing impediments.

Scrum status meetings have several benefits from a management perspec-
tive. They offer a quick and easy mechanism to collect data for status reports
and yield an immediate sense of whether a team is in trouble. By using Scrums
to their benefit, management can avoid what Peopleware (ref. 13) claims is the
ultimate management sin: wasting people’s time.

Since the HEFSS team is currently dispersed throughout the local campus
and most developers are not full time, the Scrum status meeting is only held
weekly. In addition, the team also allots some time afterward to address any
topics which may have arisen during the Scrum. This post-Scrum gathering is
governed by Open Space’s Law of Two Feet,'* which states that if during the
course of any gathering, persons find themselves in a situation in which they
are neither learning nor contributing, they must use their two feet and go to
some more productive space.

Other Communication Mechanisms

Since communication and cooperation are essential to the success of the ef-
fort, several additional tools are employed in addition to the communication
mechanisms implicit in XP. The first is a Majordomo-based electronic mail-
ing list which serves to facilitate communication among team members that
are distributed across the local campus. In addition to the e-mail list and
weekly meetings, the team also uses a web-based collaborative tool known as

1Gee www.openspaceworld.com for more discussion.

14

http://www.openspaceworld.com/

a Wiki.?» A Wiki allows users to freely create and edit web page content by
using any web browser. Wikis have a simple text syntax for creating web page
elements, and they dynamically create a new web page when they encounter a
CamelCased word (a mixed-case word containing at least two capitals). The
team uses the Wiki for a number of purposes. For example, the testing sta-
tus page is contained in the Wiki so that anyone can add new data to the
page. The Wiki is also used to share data for emerging test cases that have
yet to be incorporated into the automated testing system, and it also serves
as a repository for otherwise tacit knowledge, for example, CompilerNotes and
CreatingNewTestCases.

Documentation

Documentation for the HEFSS code takes many forms. While currently the
HEFSS code itself lacks a formal user manual,'® it does have a more exacting
form of documentation, a large set of regression test cases. Each test case
directory contains everything needed to run a given type of case and can
usually be readily adapted to a new type of case.

Meanwhile, developers have three tools available for browsing the HEFSS
code base. Code browsing can take many forms and be done for various
reasons; consolidating them into a single tool has so far proven to be an elusive
goal.

The simplest tool is a web-based rendering of the CVS repository, generated
on-the-fly by the open source VIEWCVS!” tool. This approach is based on the
CVS repository’s file directory structure and thus lacks the ability to navigate
the source by using internal structure. However, it is the only tool that readily
provides access to prior versions of the source code.

A second tool, developed by a support service contractor using C++, parses
the source code and generates web-based output by using a commercial tool,
UNDERSTAND FOR FORTRAN,'® which extracts calling tree graphs and code
statistics. The C++ code also creates tables of variable declarations and
renders comments associated with routines that are placed according to the
coding standard. The web pages generated by this tool include source code
listings that have been formatted with line numbers and are keyword-colored
to enhance readability.

A third code-browsing opportunity leverages the open source code doc-
umentation system, RDoc,'” which was originally intended for documenting
Ruby source. A short extension for this system was written to parse and

Bwww.wiki.org

16The user manual is being written.
17

18

viewcvs.sourceforge.net
www.scitools.com /uf.html
Brdoc.sourceforge.net

15

http://www.wiki.org
http://viewcvs.sourceforge.net
http://www.scitools.com/uf.html
http://rdoc.sourceforge.net

format FORTRAN 95%° and has subsequently been accepted into the RDoc dis-
tribution. The RDoc system extracts a graph of the code source based on
files, modules, and routines. From these data, it can generate frame-based
web pages, XML, or Windows help files that can be used to navigate the
calling structure.

Experience Adding New Functionality

This section presents a few examples of new functionalities that have been
incorporated into the code base. These additions have been facilitated by
the current software development process. None of these extensions had been
explicitly planned for during the initial code development, and the ease of their
inclusion is testament to the agility of the process.

Time-Accurate Simulations

In support of both passive and active flow control research at Langley, the
perfect-gas capabilities in the solver have been extended to higher order tem-
poral accuracy. The validity of the approach has been verified through numer-
ical experiments in which an order property consistent with a second-order
scheme has been demonstrated for turbulent flows. With a trivial amount
of effort, the modifications required to obtain these results in the perfect-gas
realm were extended to include reacting-gas simulations. Current work focuses
on evaluating third- and fourth-order time-integration schemes for perfect-gas
flows (ref. 24), which should also be readily extendable to more complicated
physical models as needed.

Incorporating Multiple Element Types

Initially, the HEFSS solver made sole use of tetrahedral element types to dis-
cretize a given domain. However, the ability to accommodate additional el-
ement types such as prisms, hexahedra, and pyramids provides greater flex-
ibility to match a given element type to a particular flow topology, and the
extension to include such elements in all aspects of the package is currently
ongoing. This effort represents one, if not the, most substantial modifications
to the software to date because it extends the fundamental data structure
used throughout the code base. The pre-/post-processor and solvers, as well as
all of their associated linearizations for optimization and adaptation, require
considerable modification at the most fundamental levels. This undertaking
has revealed many areas in which additional refactoring is still required before
an acceptable level of modularity is achieved.

20This extension was accomplished with only 120 lines of code.

16

Two-Dimensional Capability

A major advantage of pursuing mixed-element discretizations is the ability
to recover a truly two-dimensional solution capability, which can be achieved
through the use of prismatic and hexahedral elements in the spanwise direc-
tion, such that flux balances need only be performed in the plane of symme-
try. Axisymmetric flows can also be readily accommodated by adding source
terms. The benefits of such an approach are substantial, in that a separate
code need not be maintained for such problems, a longtime burden for the
original Fun2D/3D developers. In addition, all algorithms and physical mod-
els available in the three-dimensional path are immediately available for two-
dimensional solutions, which allows basic research to be carried out on less
costly two-dimensional problems. When computations are extended to three
dimensions, the inconsistencies normally associated with switching between
two separate solvers are no longer an issue, and the results are not contami-
nated by differences in discretizations or solution methods.

Multigrid Algorithms

A major thrust of the FAAST project is aimed at achieving textbook multigrid
efficiency (TME), an effort that could drastically reduce solution times for
complex problems (ref. 25). Since the baseline unstructured-grid solver used
as the foundation for the current work did not include options for multigrid
acceleration, much work has focused on implementing such a capability.

The use of an agglomeration multigrid algorithm relies on an edge-based
discretization of the governing equations; this requirement precludes the abil-
ity to compute solutions to the full Navier-Stokes equations on mixed-element
grids. For this reason, a geometric non-nested multigrid approach has been
initially chosen for the HEFSS solver. Operations such as coarse-grid partition-
ing and intergrid transfers in a complex domain-decomposed environment have
been developed, and a multigrid algorithm has been implemented. Although
this capability has been coded primarily with perfect-gas applications in mind,
the scheme has been implemented such that users performing reacting-gas com-
putations will also be able to make immediate use of this research without the
need to duplicate extensive low-level code development typically associated
with geometric multigrid on domain-decomposed unstructured meshes.

One component necessary to achieve TME is a line-implicit solver to over-
come stiffness associated with high-aspect ratio grid elements. The ability to
form lines suitable for implicit relaxation, to obtain an appropriate partition-
ing, and to perform an exact inversion along each line has been developed and
is applicable to any set of physical equations being solved (ref. 26).

17

Incorporating High-Energy Physics

The thermochemical nonequilibrium models in HEFSS are identical to those
in LAURA, but their implementation is substantially different. LAURA made
extensive use of precompiler directives that allocated memory and defined the
code path according to a diverse set of options. This compilation strategy
evolved from an absence of dynamic memory allocation capability in FOR-
TRAN when LAURA was originally coded and because of a desire to completely
eliminate any model-dependent conditional statements within loops that could
compromise vector efficiency. Any change in the gas model required a recom-
pilation of the source code. LAURA employs a script to guide a user through
the various permutations and combinations of options, but the process is bur-
densome to a user conducting parametric studies. In contrast, HEFSS only
needs to be compiled once on any platform, regardless of the desired physics
model options.

Model parameters in LAURA are initialized in block data routines; these
routines have been replaced by formatted data files that use conventional for-
matted reads and namelists in the HEFSS solver. Model parameters that are
unlikely to be changed by the user (thermodynamic curve fit constants, species
molecular weights, and heats of formation) are assembled in one set of data
files. Gas model options that are likely to be changed by the user on a frequent
basis, such as the chemical composition of the gases entering the domain or
the thermochemical model, are assembled in a separate file. This separation
minimizes the amount of setup required to perform a given analysis.

Adjoint Solver and Sensitivity Analysis

As important as the software practices in this effort are to the development
of new analysis capabilities, they are absolutely critical to the success of the
design element under FAAST. In references 27,28, 26, a discrete adjoint ca-
pability has been developed for the solver. This effort represents the only
capability of its kind and relies on several hundred thousand lines of exact
hand-differentiated linearizations of the preprocessor, flow solver, and mesh
movement codes with respect to both the dependent variables and the grid
coordinates. For free-stream conditions of Mach 0.84, a 3.06° angle of attack,
and 5 million Reynolds number, sensitivity derivatives of the lift and drag co-
efficients, with respect to several shape design variables for fully turbulent flow
over an ONERA M6 wing, (ref. 29) that were computed by using the discrete
adjoint formulation, are shown in table 3. The adjoint results are in excellent
agreement with those obtained using a complex-variable approach (ref. 30)
with a step size of 1x1073%. This accuracy can easily be compromised by a
single error anywhere in the source code. With a dozen researchers modifying
code on a daily basis, the use of continuous integration and automated testing
is critical in maintaining such accuracy. Just as residual and force convergence

18

Table 3. Comparison of Discrete Adjoint and Complex Variable Design Vari-
able Derivatives for Coeflicients of Lift and Drag for Fully Turbulent Flow
Over an ONERA M6 Wing

Camber Thickness Twist Shear
C 0.956208938269467 -0.384940321071468 -0.010625997076936 -0.005505627646872 adjoint
L 0.956208938269046 -0.384940321071742 -0.010625997076937 -0.005505627647001 complex
C 0.027595818243822 0.035539494383655 -0.000939653505699 -0.000389373578383 adjoint
D 0.027595818243811 0.035539494383619 -0.000939653505699 -0.000389373578412 complex

histories are monitored to machine accuracy for the flow solver on several ar-
chitectures, similar quantities are constantly tested for the adjoint solver and
gradient evaluation codes. This constant testing ensures that discrete consis-
tency between the analysis and design tools is always maintained, regardless
of the modifications being implemented in other parts of the software.

Similar to the continuous integration and testing performed for the hand-
differentiated code, a Ruby code has been developed similar to the effort de-
scribed in reference 31 to automatically convert the codes in the HEFSS suite
to a complex-variable formulation. This capability can immediately recover a
forward mode of differentiation for the entire solver at any time, with no user
intervention. This procedure is also continuously tested.

Design Optimization

Approximation and Model Management Optimization (AMMO) techniques
(refs. 32, 33, and 34) have been recently added to the HEFSS software set.
AMMO is a methodology aimed at maximizing the use of low-fidelity models
in iterative procedures with occasional but systematic recourse to higher fi-
delity models for monitoring the progress of the algorithm. In current demon-
strations, AMMO has exhibited from three to five-fold savings in terms of
high-fidelity simulations on aerodynamic optimization of 3D wings and mul-
tielement airfoils, where simplified physics models (e.g., Euler) computed on
coarse grids serve as low-fidelity models, while more accurate models (e.g.,
Navier-Stokes) computed on finer grids serve as high-fidelity models. AMMO
was the first approach for using variable-fidelity models analytically guaran-
teed to converge to high-fidelity answers.

Because AMMO relies on using a variety of models in a single optimiza-
tion run, maintaining continuous integration and consistency with the en-
tire software set is especially crucial for obtaining stable optimization results.
However, designing a testing strategy for optimization presents an interesting
challenge because optimization algorithms require reasonably well converged
analyses and are, therefore, expensive. Procedures for automated testing of
optimization software is currently under development.

19

Output Error Correction and Grid Adaptation

One thrust of the FAAST program is to develop a mathematically rigorous
methodology to adapt a grid discretization to directly improve the calcula-
tion of an output function. An adjoint-based error correction and adaptation
scheme has produced excellent results in two dimensions (ref. 35). This scheme
is being extended to three dimensions and incorporated into HEFSS (ref. 5).
This error correction and adaptation scheme requires the calculation of flow
and adjoint residuals on embedded grids with interpolated solutions. The
modularity of the HEFSS reconstruction, flux, and adjoint routines facilitated
this calculation.

The interpolation of the solution onto the embedded grid requires the cal-
culation of least-squares gradients. This gradient routine was readily shared
between the flow and adjoint codes. The element-based interpolation scheme
was developed test-first with the FO5UNIT framework. The code to compute
the flow and adjoint residuals consists of only a small driver routine; the re-
mainder of the code is reused from the flow and adjoint solvers. The anisotropic
adaptation metric is calculated with code that was also developed test-first by
using the F95UNIT framework.

Concluding Remarks

The Fast Adaptive AeroSpace Tools (FAAST) team uses techniques from the
arena of commercial software development to implement an agile process for
managing a development effort on a production software tool set. The agile
aspects, such as collective ownership, simple design, and the lack of change
boards, enable the rapid development of previously unplanned-for functional-
ity. At the same time, the rigorous aspects, such as continuous integration
and testing, maintain a stable base for the existing functionality.

An additional benefit of the present software process is that since there
is only one code base for all of the development efforts, advances in one area
of functionality immediately become part of the mainstream capability and
are thus readily available to other researchers and users. For example, time-
accuracy enhancements developed in the context of perfect gas flows were
easily extended to apply for chemically reacting flows.

One remarkable aspect of this project is that developers who previously
shuddered at the word “process” gelled into a team that uses a fairly rigorous,
pervasive software process that they enjoy.

20

Colophon

This paper is typeset in Donald Knuth’s Computer Modern Font with the free,
multiplatform KTEX?! typesetting system using the NASA class developed by
Wood and Kleb.?? The auxiliary ITEX packages are array, dcolumn, fancyvrb,
multirow, rcsinfo, tabularx, textcomp, time, url, varioref, and xspace.

References

1.

Thomas, J. L.; Alexandrov, N.; Alter, S. J.; Atkins, H. L.; Bey, K. S;
Bibb, K. L.; Biedron, R. T.; Carpenter, M. H.; Cheatwood, F. M.; Drum-
mond, P. J.; Gnoffo, P. A.; Jones, W. T.; Kleb, W. L.; Lee-Rausch, E. M.;
Merski, N. R.; Mineck, R. E.; Nielsen, E. J.; Park, M. A.; Pirzadeh, S. Z.;
Roberts, T. W.; Samareh, J. A.; Swanson, R. C.; Vatsa, V. N.; Weilmuen-
ster, K. J.; White, J. A.; Wood, W. A.; and Yip, L. P.: Opportunities
for Breakthroughs in Large-Scale Computational Simulation and Design.
NASA/TM 2002-211747, 2002.

Cheatwood, F. M.; and Gnoffo, P.: User’s Manual for the Langley
Aerothermodynamic Upwind Relazation Algorithm (LAURA). NASA TM-
4674, 1996.

. White, J. A.; and Morrison, J. H.: A Pseudo-Temporal Multi-Grid Relax-

ation Scheme for Solving the Parabolized Navier-Stokes Equations. ATAA
Paper 99-3360, June 1999.

Jones, W. T.: GridExAn—An Integrated Grid Generation Package for
CFD. ATAA Paper 2003-4129, June 2003.

Park, M. A.: Three-Dimensional Turbulent RANS Adjoint—Based Error
Correction. ATAA Paper 2003-3849, June 2003.

. Anderson, W. K.; Rausch, R. D.; and Bonhaus, D. L.: Implicit/Multigrid

Algorithms for Incompressible Turbulent Flows on Unstructured Grids.
J. Comput. Phys., vol. 128, no. 2, 1996, pp. 391-408.

Cambier, L.; and Gazaix, M.: elsA: An Efficient Object-Oriented Solution
to CFD Complexity. ATAA Paper 2002-0108, Jan. 2002.

Kroll, N.; Rossow, C. C.; Becher, K.; and Theile, F.: MEGAFLOW—A
Numerical Flow Simulation System. ICAS 98-2.7.4, Sept. 1998.

21

www.ctan. org

22Restricted availability through lms.larc.nasa.gov/library, or contact
Bill. Wood@NASA.Gov

21

http://www.ctan.org
http://lms.larc.nasa.gov/library/
mailto:Bill.Wood@NASA.Gov?subject=NASAclass

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

23.

Schwaber, K.; and Beedle, M.: Agile Software Development with Scrum.
Prentice Hall, Oct. 2001. See also http://www.controlchaos.com. Ac-
cessed 16 June 2003.

McBreen, P.: Software Craftsmanship: The New Imperative. Addison-
Wesley, 2002.

Wood, W. A.; and Kleb, W. L.: Extreme Programming in a Research
Environment. Eztreme Programming and Agile Methods—XP/Agile Uni-
verse 2002, D. Wells and L. Williams, eds., Springer-Verlag, Chicago, IL,
Aug. 2002, vol. 2418 of Lecture Notes in Computer Science, pp. 89-99.

Wood, W. A.; and Kleb, W. L.: Exploring XP for Scientific Research.
IEEFE Software, vol. 20, no. 3, 2003, pp. 30-36.

DeMarco, T.; and Lister, T.: Peopleware: Productive Projects and Teams.
Dorset House, 2nd ed., 1999.

Lencioni, P.: The Five Dysfunctions of a Team: A Leadership Fable.
Jossey-Bass, 2002.

Beck, K.: Extreme Programming Ezplained. Addison-Wesley, 2000.

Paulk, M. C.; Weber, C. V.; and Curtis, W.: The Capability Maturity
Model: Guidelines for Improving the Software Process. Addison-Wesley,
1995.

Humphrey, W. S.; and Lovelace, M.: Introduction to the Team Software
Process. Addison-Wesley, 1999.

Lee-Rausch, E. M.; Buning, P. G.; Morrison, J. H.; Park, M. A.; Rivers,
S. M.; Rumsey, C. L.; and Mavriplis, D.: CFD Sensitivity Analysis of a
Drag Prediction Workshop Wing/Body Transport Configuration. ATAA
Paper 2003-3400, June 2003.

Boehm, B. W.: Software Engineering Economics. Prentice Hall, 1st ed.,
Oct. 1981.

Beck, K.: Test Driven Development: By Example. Addison-Wesley, 2002.

Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-
Wesley, 1999.

Williams, L.; and Kessler, R.: Pair Programming Illuminated. Addison-
Wesley, 2003.

Kerth, N.: Project Retrospectives: A Handbook for Team Reviews. Dorset
House, 2002.

22

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Carpenter, M. H.; Viken, S. A.; and Nielsen, E. J.: The Efficiency of High
Order Temporal Schemes. ATAA Paper 2003-0086, Jan. 2003.

Thomas, J. L.; Diskin, B.; and Brandt, A.: Textbook Multigrid Efficiency
for Fluid Simulations. Annual Review of Fluid Mechanics, vol. 35, 2003,
pp. 317-340.

Nielsen, E. J.; Lu, J.; Park, M. A.; and Darmofal, D. L.: An Exact
Dual Adjoint Solution Method for Turbulent Flows on Unstructured Grids.
ATAA Paper 2003-0272, Jan. 2003.

Nielsen, E. J.: Aerodynamic Design Sensitivities on an Unstructured Mesh
Using the Navier-Stokes Equations and a Discrete Adjoint Formulation.
Ph.D. Thesis, Virginia Polytechnic Institute and State University, 1998.

Nielsen, E. J.; and Anderson, W. K.: Recent Improvements in Aerody-
namic Design Optimization on Unstructured Meshes. AIAA J., vol. 40,
no. 6, 2002, pp. 1-9. See also ATAA Paper 01-0596.

Schmitt, V.; and Charpin, F.: Pressure Distributions on the ONERA-M6
Wing at Transonic Mach Numbers. AGARD AR-138, May 1979.

Anderson, W. K.; Newman, J. C.; Whitfield, D. L.; and Nielsen, E. J.: Sen-
sitivity Analysis for the Navier-Stokes Equations on Unstructured Meshes
Using Complex Variables. AIAA J., vol. 39, no. 1, 2001, pp. 56-63. See
also ATAA Paper 99-3294.

Martins, J. R. R. A.; Kroo, I. M.; and Alonso, J. J.: An Automated
Method for Sensitivity Analysis Using Complex Variables. AIAA Paper
2000-0689, Jan. 2000.

Alexandrov, N. M.; and Lewis, R. M.: A Trust Region Framework for Man-
aging Approximation Models in Engineering Optimization. AIAA Papers
96-4101 and 96-4102, Sept. 1996.

Alexandrov, N. M.; Nielsen, E. J.; Lewis, R. M.; and Anderson, W. K.:
First-Order Model Management with Variable-Fidelity Physics Applied to
Multi-Element Airfoil Optimization. AIAA Paper 2000-4886, Sept. 2000.

Alexandrov, N. M.; Lewis, R. M.; Gumbert, C. R.; Green, L. L.; and
Newman, P. A.: Approximation and Model Management in Aerodynamic
Optimization with Variable-Fidelity Models. J. Airer., vol. 38, no. 6, 2001,
pp. 1093-1101.

Venditti, D. A.; and Darmofal, D. L.: Anisotropic Grid Adaptation
for Functional Outputs: Application to Two-Dimensional Viscous Flows.
J. Comput. Phys., vol. 187, 2003, pp. 22-46.

23

36.

37.

38.

39.

40.

41.
42.

Bibb, K. L.; Peraire, J.; and Riley, C. J.: Hypersonic Flow Computations
on Unstructured Meshes. ATAA Paper 97-0625, Jan. 1997.

Venditti, D. A.; and Darmofal, D. L.: Adjoint Error Estimation and
Grid Adaptation for Functional Outputs: Application to Quasi-One-
Dimensional Flow. J. Comput. Phys., vol. 164, 2000, pp. 204-227. See
also ATAA Paper 99-3292.

Venditti, D. A.; and Darmofal, D. L.: Grid Adaptation for Functional Out-
puts: Application to Two-Dimensional Inviscid Flows. J. Comput. Phys.,
vol. 176, 2002, pp. 40-69. See also AIAA Paper 2000-2244.

Venditti, D. A.: Grid Adaptation for Functional Outputs of Compressible
Flow Simulations. Ph.D. Thesis, Massachusetts Institute of Technology,
2002.

Park, M. A.: Adjoint-Based, Three-Dimensional Error Prediction and
Grid Adaptation. ATAA Paper 2002-3286, June 2002.

Matsumoto, Y.: Ruby in a Nutshell. O’Reilly, Sebastopol, CA, 2002.

Thomas, D.; and Hunt, A.: Programming Ruby: The Pragmatic Program-
mer’s Guide. Addison-Wesley, 2001.

24

Appendix A
Code History and Architecture

This appendix provides a detailed review of the HEFSS code history and
its architecture. The first section contains an explanation of how the baseline
code, FUN3D, was selected, followed by a section describing how FORTRAN
95 was selected as the programming language. These reviews are followed
by two sections that cover porting FUN3D to FORTRAN 95 and the use of
object-oriented design principles.

Baseline Code Selection

Three Langley unstructured-grid codes, Usm3D, FUN3D, and FELISA (ref. 36),
were considered as the initial template for the HEFSS code. FELISA, an in-
viscid, unstructured-grid flow solver, already has considerable success in the
hypersonic domain. It also has equilibrium and thermochemical nonequi-
librium gas models. While the addition of thermochemical nonequilibrium
source terms, thermodynamic models, and transport models was perceived to
be straightforward, considerable effort would have been required to introduce
the viscous terms, the viscous flux Jacobians, and an implicit solution scheme.
Both UsMm3D and FUN3D are highly successful codes for computing viscous
flow on unstructured grids within the subsonic to low supersonic speed regimes.
Ultimately, FUN3D was selected because it is more robust in the hypersonic
domain, which is apparently attributable to its combination of Roe Flux Dif-
ference Splitting, flux reconstruction, and associated limiters. In addition, its
discretizations are similar to LAURA, and the discrete adjoint capability for
perfect gas design (refs. 26, 27, and 28) and grid adaptation (refs. 5, 35, 37,
38, 39, and 40) was judged particularly appealing for future hypersonic design
and grid adaptation. A successful retrofitting of FUN2D with thermochemical
nonequilibrium models confirmed the viability of this approach.

Programming Language

Most of the CFD codes developed at Langley are written in FORTRAN 77 and
often rely on nonportable extensions such as vendor-specific functions or links
with C code. For the current project, the team sought a single, unifying stan-
dard language under which to develop new code. After surveying the available
programming languages and deciding that a mixed-language code base would
increase complexity too much, FORTRAN 95 was selected for the new suite
of codes. FORTRAN 95 promises the numerical performance of FORTRAN 77
with the advanced features of other languages, such as dynamic memory al-
location, derived types, recursion, and modules. This choice also allows a

25

relatively straightforward conversion of a substantial legacy code base written
in FORTRAN 77.

The selection of FORTRAN 95 was tempered by the commitment to deliver
a hypersonic flow simulation with thermochemical nonequilibrium on a geo-
metrically simple configuration within 18 months. Adoption of a programming
language significantly different from FORTRAN would have required a learning
period for the majority of the team members, who were already proficient with
FORTRAN 77. The time required to bring team members up to speed in a new
language, plus the time required for conversion of legacy FORTRAN 77 to a
language outside the FORTRAN family, was judged too costly, relative to the
potential benefit offered by any other language.

FORTRAN 95 training was tailored to team needs in a two-part workshop.
Dan Nagle, from Purple Sage Computing Solutions,*! spent a day with the
team learning the HEFSS code objectives and the architecture of the legacy
code. Using this material, he prepared a two-day course which highlighted
FORTRAN 95 features suited to the HEFSS project.

Auxiliary scripting for controlling code compilation, templating, and test-
ing is performed with Ruby (refs. 41 and 42) and Make.*? Ruby is an open
source, object-oriented, threaded-scripting language with cross-platform sup-
port, while Make is an open source compilation tool.

Porting and Restructuring

To lay a solid foundation for the new suite of solvers, FUN3D and the phys-
ical models from LAURA and VULCAN were ported from a mixture of C and
FORTRAN 77 to FORTRAN 95. Porting FORTRAN 77 code to FORTRAN 95
was initially thought to be a simple process that could be accommodated by
using a combination of homegrown scripts and a commercial software package,
FORESYS A% FORESYS" was helpful when implicit none was requested be-
cause it would automatically declare all variables used in the routine. It also
provided instructive diagnostics for various classes of errors during the con-
version process and when replacing common blocks by modules. However,
it invariably reformatted lines and destroyed symmetric forms of equations
that had been carefully introduced by earlier authors, and it repositioned or
silently eliminated comments. Eventually, Ruby and Perl scripts were crafted
to handle tedious, error-prone operations such as code indentation and the
conversion of continuation symbols without losing the comments and other
structured formatting. The remainder of the conversion was done manually.
As the team had a chance to study the legacy structure, it became clear that

Al
A2

users.erols.com/dnagle
www.gnu.org/software/make /make.html

ASPORESYS is a trademark of Connexite S.A., for more information see
www.simulog.fr /is /2forel.htm.

26

http://users.erols.com/dnagle/
http://www.gnu.org/software/make/make.html
http://www.simulog.fr/is/2fore1.htm

the old arrangements of common blocks and subroutines were counter to the
modularity and extensibility the team was trying to create; so, during the port
to FORTRAN 95, common routines and functions were extracted and placed
in a single, shared library directory, while data structures such as boundary
conditions, grid metrics, and solution quantities were generalized to handle an
arbitrary number of equations and were encapsulated in derived types.

The use of derived types provides additional flexibility over FORTRAN 77;
however, early versions of FORTRAN 95 compilers often displayed a significant
performance penalty when these constructs were used in the computationally
intensive regions of the solver.* Consequently, the restructuring effort often
required reworking these core routines to recover performance comparable to
the legacy solver.

This transformation took nearly a year and was not without difficulties, but
it was definitely a worthwhile effort because it gave team members hands-on
experience with a code most had never seen before, instead of merely accepting
the results of an automatic conversion. The conversion process also gave the
team an opportunity to create and tailor a coding standard®® suited to their
style and knowledge. In addition, the total lines of source code had been
reduced by some 40 percent, in itself a significant benefit from the standpoint
of code maintenance.

Modularity and Encapsulation

Modularization, along with abstraction, information hiding, and encapsula-
tion, are also means used to enhance code maintainability and bring the addi-
tional promises of code reuse, reduced complexity, extensibility, and orthogo-
nality.*6 Abstraction is the process of picking out common features of objects
or procedures and replacing them with a single, more general function. Infor-
mation hiding reduces complexity by hiding details of an object or function
so the developer can focus on the object without worry about the hidden de-
tails. Encapsulation, or combining elements to create a larger entity, is one
mechanism to achieve this goal.

The FORTRAN 95 constructs of modules, interface statements, public and
private declarations, and derived types were employed to implement these
ideas. FORTRAN 95 modules are similar to the class construct in object-
oriented languages, while derived types are akin to structures. Modules were
designed to abstract types of operations (e.g., file input/output, memory al-
location, interprocessor communication, execution timing, linear algebra, and
so on). Many modules employ a generic interface statement that automati-
cally detects the type, kind, and rank of the calling arguments at compile time

AdGee appendix C on page 34 for current results.
A5See appendix B on page 31.
A6Tn this case orthogonal is used in the sense of mutually independent or well separated.

27

and matches them to an appropriate low-level routine, which allows them to be
largely independent of any particular flow solver since data are only exchanged
through well-defined interfaces. Many of these FORTRAN 95 interface state-
ments are produced automatically in the build process by a Ruby script which
emulates the template system available in C++-. In the remainder of this sec-
tion, specific examples are given to demonstrate the benefits of modularization
and data encapsulation.

Memory allocation

Array memory allocation is handled by a single interface statement in a module
that automatically detects the type, kind, and rank of the argument and calls
the appropriate low-level routine for the allocation and initialization. This
abstraction streamlines memory allocation requests throughout the code since
memory tracking and diagnostics can be placed and maintained in a single
location.

Parallel Communication

Originally, the baseline solver relied on a shared-memory implementation spe-
cific to SGI® hardware and was not portable to the increasingly popular
cluster-based, distributed-memory computing platforms. Moreover, the com-
munication operations were dispersed throughout the solver, and any modifi-
cations to the communication model needed to be made in numerous locations
throughout the code. In the current work, the message passing interface (MPI)
standard was selected. Interprocessor communication has been abstracted
from all but the lowest levels of the source code and is now encapsulated in a
single module.

With this centralized approach to MPI communication, it is now trivial to
make sweeping changes to the parallel aspects of the code, including completely
removing it to produce a sequential version of the code. This abstraction also
benefited the team when the high-energy, reacting-gas portion of the code was
parallelized successfully on the first attempt. Normally, a developer would
expect to spend considerable time debugging interprocessor communication.

Boundary Conditions

Another area in which modularity and data encapsulation have provided a
significant benefit is in the treatment of boundary conditions. The baseline
FuN3D solver was extremely deficient in its ability to handle a wide range of
boundary conditions. The user was restricted to inviscid, inflow/outflow, and
viscous boundary types. Information required for these boundary types was
contained in hard-coded data structures specific to each condition and were
dispersed throughout the code. This design had become extremely limiting in

28

recent applications and was clearly not sufficient for extension to high-energy
flows, where a large array of boundary condition types are required.

Using FORTRAN 95 derived types to encapsulate boundary condition infor-
mation, the baseline solver was completely refactored to allow the straightfor-
ward addition of new boundary types. For any given boundary condition, all
necessary data are contained in a boundary condition type. An array of these
derived types then constitutes all boundaries in a given problem. For bound-
ary conditions requiring additional physical data, a link to an additional data
structure specific to that boundary condition is encapsulated. Derived types
also allow the additional enrichment of the data structure without modifying
argument lists. In this manner, any number of different boundary groups can
be efficiently handled at the higher levels of the solver and unrolled for use as
needed.

It should be noted that this data structure also allows for a natural han-
dling of cost functions based on boundary data required for the design and
grid adaptation capabilities within FAAST. Objective functions composed of
viscous and/or pressure contributions can easily be specified on any subset or
combination of boundary groups such that a specific flow feature or region of
the domain can be targeted. For example, if it is determined that a strong
shock on the outboard section of a wing is responsible for a severe wave drag
penalty, a cost function can easily be formulated based solely on the contri-
bution of that boundary group to the total drag. This method represents a
substantial improvement over the baseline capabilities, in which all boundary
groups necessarily contributed to a given cost function.

Gas Physics

Modules, interfaces, and derived types are used extensively for the gas phase
physics modules, which include thermodynamics, transport properties, ther-
mal relaxation, and chemical kinetics. The thermodynamics module contains
the initial interface from the flow solver to gas phase physics. The trans-
port property module interfaces with the flow solver and the thermodynamics
module to define molecular viscosity, conductivity, and species diffusivities.
The thermal relaxation module is engaged when populations of excited states
(rotational, vibrational, and electronic modes) cannot be defined by a single
temperature. This module provides the source terms that define energy ex-
change among the available, thermally distinct modes. The chemical kinetics
module provides source terms for the species continuity equations that define
the rate of production or destruction of species.

In conclusion, it should also be noted that because the HEFSS project
started with a large legacy code base and modularity and data encapsula-
tion are elusive goals, which are really only earned through experience, code
architecture changes are ongoing. In addition, there are drawbacks to modu-

29

larization that must be considered. For example, it was originally anticipated
that compilers could optimize high-level constructs like derived types as if they
were written using their lower-level counterparts. However, as appendix C on
page 34 reveals, such is not always the case in practice.

30

Appendix B
Coding Standard

Note: bracketed numbers refer to line numbers in the sample program which follows.

Style

Free format with no character past column 80

Indentation: begin in first column and recursively indent all subsequent blocks by
two spaces.

Start all comments within body of code in first column [42].

Use all lowercase characters; however, mixed-case may be used in comments and
strings.

Align continuation ampersands within code blocks [77].
No tab characters

Name ends [s3].

Comments

For cryptic variable names, state description using by a comment line immediately
preceding declaration or on end of the declaration line [62].

For subroutines, functions, and modules, insert a contiguous comment block imme-
diately preceding declaration containing a brief overview followed by an optional
detailed description [42].

Variable Declarations

Do not use FORTRAN intrinsic function names.
Avoid multiline variable declarations.
Declare intent on all dummy arguments [63].

Declare the kind for all reals, including literal constants, using a kind definition
module.

Declare dimension attribute for all nonscalars [63].
Line up attributes within variable declaration blocks.
Any scalars used to define extent must be declared prior to use [60].

Declare a variable name only once in a scope, including use module statements.

Module Headers

Declare implicit none [35].
Include a public character parameter containing the CVS Id tag [s7].

Include a private statement and explicitly declare public attributes.

31

Subroutines and Functions
e The first executable line should be continue [69].
e Use the only attribute on all use statements [ss].
e Keep use statements local, i.e., not in the module header.
e Group all dummy argument declarations first, followed by local variable declarations.
e All subroutines and functions must be contained within a module.

e Any pointer passed to a subroutine or function must be allocated by at least size 1
to avoid null or undefined pointers.

Control Constructs

e Name control constructs (e.g., do, if, case) which span a significant number of lines
or form nested code blocks.

e No numbered do-loops.

e Name loops that contain cycle or exit statements.

e Use cycle or exit rather than goto.

e Use case statements with case defaults rather than if-constructs wherever possible.

e Use F90-style relational symbols, e.g., >= rather than .ge. [73].

Miscellaneous

e In the interest of efficient execution, consider avoiding:

— assumed-shape arrays
— derived types in low-level computationally intensive numerics
— use modules for large segments of data

e Remove unused variables.

e Do not use common blocks or includes.

Illustrative Example

1 ! Define kinds to use for reals in one place

2

3 module kind_defs

4

5 implicit none

6

7 character (len=#), parameter :: kind_defs_cvs_id = &

8 ’$Id: cs_example.f90,v 1.6 2003/12/03 14:11:51 kleb Exp $’
9
10 integer, parameter :: sp=selected_real_kind(P=6) ! single precision
11 integer, parameter :: dp=selected_real_kind(P=15) ! double precision
12

13 end module kind_defs

14

15 ! A token module for demonstration purposes

16

17 module some_other_module

18

19 implicit none
20
21 character (len=%), parameter :: some_other_module_cvs_id = &
22 ’$Id: cs_example.f90,v 1.6 2003/12/03 14:11:51 kleb Exp $’
23
24 integer, parameter :: some_variable = 1

32

25
26 end module some_other_module

27

28 ! A collection of transformations which includes

29 ! stretches, rotations, and shearing. This comment

30 ! block will be associated with the module declaration

31 ! immediately following.

32

33 module transformations

34

35 implicit none

36

37 character (len=#), parameter :: transformations_module_cvs_id = &
38 ’$Id: cs_example.f90,v 1.6 2003/12/03 14:11:51 kleb Exp $’
39

40 contains

41

42 ! Computes a stretching transformation.

43 !

44 ! This stretching is accomplished by moving

45 ! things around and going into a lot of other details

46 ! which would be described here and possibly even

47 ! another "paragraph" following this.

48 !

49 ! This contingous comment block will be associated with the
50 ! subroutine or function declaration immediately following.
51 ! It is intended to contain an initial section which gives
52 ! a one or two sentence overview followed by one or more

53 ! "paragraphs" which give a more detailed description.

54

55 subroutine stretch (points, x, y, z)

56

57 use kind_defs

58 use some_other_module, only: some_variable

59

60 integer, intent(in) :: points

61

62 ! component to be transformed

63 real(dp), dimension(points), intent(in) :: x, y

64 real(dp), dimension(points), intent(out) :: z ! transformation result
65

66 external positive

67 integer :: i

68

69 continue

70

71 i=0

72

73 if (x(1) > 0.0_dp) then

74 call positive (points, x, y, z)

75 else

76 do i = 1, points

77 2z(i) = x(L)*x(i) + 1.5_dp * (real(i) + x(i))**i &
78 + (y(i) * real(i)) * (x(i)**i + 2.0_dp) &
79 + 2.5_dp * real(i) + 148.2_dp * some_variable
80 enddo

81 endif

82

83 end subroutine stretch

84

85 end module transformations

33

Appendix C

Fortran 95 Considerations

The rationale for some elements of the coding standard presented in the
previous section are discussed in this section.

Best Practices

The use of implicit none minimizes the possibility of variable type errors.
An example of a type error is when the implicit FORTRAN integer typing
scheme creates integers for variable names beginning with the letters “i” through
“n” when the user had intended a real variable. This unintended declaration
type is avoided because implicit none requires every variable to be declared
explicitly.

The use of only®! prevents unintended changes to values of other vari-
ables in the inherited modules. The only statement also facilitates finding
the module that provides the inherited variable. To further restrict access
to variables or subroutines in modules, a private statement is to be placed
at the top of the module. An exclusive and explicit list of public entities
is therefore required to share module data and methods outside the module.
This exclusivity prevents unintended variable modifications.

Use of equality comparison with reals should be avoided because small,
round-off errors may be present. The difference between the two variables
is compared to an intrinsic function like tiny() to provide a more reliable
comparison.

In general, the use of the select case conditional construct is more effi-
cient than using an if-elseif construct since if-elseif might require sev-
eral condition evaluations, while the select case only contains one condition
evaluation. The select case construct is analogous to the depreciated com-
puted goto.“? Also select case constructs convey control logic in clearer
fashion and allow for cleaner error handling through the default case.

Performance Considerations

Throughout the FORTRAN 95 restructuring of the FUN3D solver, several effi-
ciency issues pertaining to advanced coding constructs were uncovered. Fea-
tures such as derived types and modules are extremely attractive for commu-
nicating data; however, it was found that current FORTRAN 95 compilers often

ClFor example, use aModule, only : aVariable
C2See groups.google.com /groups?threadm=907uhi%24pus%241%40eising. k-net.dk for fur-
ther discussion.

34

http://groups.google.com/groups?threadm=9o7uhi%24pus%241%40eising.k-net.dk

failed to produce performance comparable to that of conventional FORTRAN 77
constructs such as passing data through calling argument lists.

Data Sharing With Modules

An intermediate restructuring of FUN3D relied almost exclusively on the use
of FORTRAN 95 modules. By eliminating virtually every argument list in
the solver, an exceptionally clean code was obtained. However, in subsequent
testing, this implementation was shown to be several times slower in execution
speed than the legacy C/FORTRAN 77 solver. Upon closer inspection, it was
found that the use of modules to communicate large segments of data can be
extremely inefficient. To illustrate this degradation in performance, the test
code included as appendix D on page 40 has been executed on a range of plat-
forms and compilers as listed in table C1. Here, data are communicated with a

Table C1. Compilers Used in Performance Study

Vendor Options Release O/S Platform
Absoft” -03 -cpu:p6 8.0-1 Linux® 2.4.18 Intel® P3
Compaq® -arch ev67 X1.1.1-1684 Linux® 2.4.2 Alpha EV67
-fast -04
-tune ev67
HP® -03 2.4 HP-UX® B.10.20 HP® 9000
IBM® -05 7 AIX® 3 IBM® 7044
Intel® -03 -ipo -wK 7.1-008 Linux® 2.4.18 Intel® P3
Lahey-Fujitsu --02 --nwarn 6.20a Linux® 2.4.18 Intel® P3
-static --nsav
--ntrace
--nchk -x -
NAG® -04 4.2 Linux® 2.4.18 Intel® P3

-Wc,-malign-double
-ieee=full

-unsharedf95
NA Software -fast 2.2-1 Linux® 2.4.18 Intel® P3
PGI® -fast 4.1-1 Linux® 2.4.18 Intel® P3
SGI® -02 7.3.1.2m IRIX® 6.5 SGI® R10000
Sun™ -fast 6.2-2 SunOS" 5.8 Sun™ Blade1000

file I/O routine, as well as a routine that performs a large amount of arbitrary
floating-point manipulations. In addition to an array A passed through a tra-
ditional argument list interface, an identical array B is also passed to and from
the subroutines through the use of a FORTRAN 95 module. For this test, the
extent of the arrays is 20M, a value on the order of that encountered in typical
aerodynamic simulations. The results are normalized on the data obtained
using the argument list model. As can be seen in table C2, use of the module

35

Table C2. Unformatted Disk 1/O Using 20M Integers and 20M Reals

Compiler Assumed size Module Derived type Assumed shape

Absoft™ 1.00 1.00 1.03 1.04
Compaq® 1.00 0.98 6.47 0.99
IBM® 1.00 1.03 1.01 1.03
Intel® 1.00 1.16 1.14 1.05
Lahey /Fujitsu 1.00 6.05 5.99 1.04
NAG® 1.00 1.02 1.22 1.03
NA Software 1.00 0.99 1.08 1.01
PGI® 1.00 0.98 1.00 0.98
SGI® 1.00 31.91 31.37 34.80
Sun™ 1.00 0.98 1.02 0.98

construct can incur severe penalties for unformatted disk I/O. The module
interface is over 30 times slower than the data transferred via a conventional
argument list on an SGI®. For floating-point arithmetic, the module interface
exhibits run times on the order of 20 percent higher than the computations
using data brought in through an argument list, as shown in table C3. Due

Table C3. Compute Work Using 20M Integers and 20M Reals

Compiler Assumed size Module Derived type Assumed shape

Absoft™ 1.00 1.16 1.84 1.20
Compaq® 1.00 1.40 1.47 1.38
IBM® 1.00 2.76 2.76 2.76
Intel® 1.00 0.97 0.98 0.95
Lahey/Fujitsu 1.00 1.07 1.07 1.02
NAG® Aborted

NA Software 1.00 0.95 1.13 0.92
PGI® 1.00 1.96 1.96 0.94
SGI® 1.00 1.10 1.10 1.07
Sun™ 1.00 1.42 1.40 1.07

to this performance degradation, the module construct is employed sparingly
in the HEFSS solver as a means to share large data structures. Only small
amounts of data such as free-stream quantities, algorithmic parameters, and
turbulence modeling constants are shared through modules.

Derived Types

The baseline C/FORTRAN 77 solver was also refactored to make extensive use
of the FORTRAN 95 derived type construct. The derived type is very attractive

36

in the sense that a number of related quantities can be encapsulated in a single
variable, yielding relatively short argument lists throughout the code. Using
this paradigm, variables related to the computational grid are stored in a
grid type; solution-related variables are located in a soln type, and so forth.
When a low-level routine requires a fundamental piece of data such as the
coordinates of a grid point i, the information can be extracted as grid’%x (i),
grid%y (i), and grid%z(i). Arrays of derived types are also supported under
FORTRAN 95, making the implementation of algorithms such as multigrid and
multiple instances of quantities, such as boundary groups, straightforward.

As in the case of modules, it was found that the use of derived types can
also incur severe execution penalties. As shown in the last column of tables C2
and C3, a similar test to the one described previously has been performed on
an array C transferred as the component of a derived type variable. It can
be seen in tables C2 and C3 that this coding idiom can yield execution times
more than 30 times slower for unformatted disk I/O and nearly a factor of
three slower for floating-point operations over the argument list model.

The current HEFSS solver uses derived types to encapsulate much of its
data structures; however, the components of these types required by low-level
routines are extracted at the calling level and are received as conventional
scalars and arrays in the I/O- and compute-intensive portions of the code.
This model allows simple argument lists at the higher levels of the code, while
maintaining the performance of the baseline solver. From a developer’s point
of view, derived types are one of the more useful enhancements of FORTRAN 95
over FORTRAN 77. They allow the developer to string together variables in
meaningful groups and treat them as a single entity when desired. The HEFSS
code uses a number of derived types. For example, the grid derived type
contains all the information needed for the specification of the discretized
mesh—=x,y,z values for each point in space, cell volumes, cell-face normals and
areas, connectivity information, and so on. Any of this information is available
with the simple construct gridvariable, e.g., grid%x. Derived types may
also be concatenated, extending their usefulness. For example, the grid derived
type in the HEFSS code encompasses a boundary condition derived type that
contains all the necessary data to impose boundary conditions—the physical
condition (e.g., solid wall), the locations of points on the boundary, surface
normals, and so forth. In addition, the definition of the derived type may
be extended at a future date without affecting existing code. For example,
adding a cell-face velocity for moving grid applications would involve a one-
line addition to the type definition and would be completely transparent to
sections of code not requiring this information.

37

Assumed-Shape Arrays

As shown in tables C2 and C3 on page 36, some compilers treat arguments
passed via assumed-shape arrays as poorly as they did derived types. Assumed-
shape arrays can be noncontiguous, and thus interfacing to old FORTRAN 77
routines may require data to be copied to form a contiguous data block. These
data copies can cause a large increase in the total memory required to compute
a flow solution for some compilers as compared to others.

Memory Copies

Occasionally, it is desirable to bring variables into a routine via argument lists
rather than modules, as demonstrated in tables C2 and C3. However, unex-
pected behavior was detected on certain platform/compiler combinations when
argument lists were combined with low-level module use. In these instances,
the variables in the modules were not synchronized with the argument list
variables. This synchronization issue was resolved when argument lists were
used consistently throughout the subroutines that needed access to the data.
It was eventually surmised that this problem was due to memory copies made
by some compilers during a subroutine call. When that data copy was modi-
fied, it was no longer synchronized with the original data stored in the module
and accessed with use. Also, on return from the subroutine, the local copy of
the data was used to overwrite the data stored in the module, possibly erasing
any modifications of the original data while the copy existed. This behavior
appears to be very compiler and application specific and very difficult to detect
and instrument.

Compilation Errors, Warnings, and Information

The various compilers listed in table C3 generally have different sets of con-
structs that deem errors or produce a warning or other information. Some
of the compilers are generally more lenient or particular than others when
it comes to the constructs that are accepted as valid code for compilation.
The FORTRAN 95 code base has benefited from exposure to a large number
of different compilers. The coding standard contains guidelines for promot-
ing portability. This portability experience was gained by exposure to multi-
ple compilers, which makes it important to build and test on many different
architectures/compilers, and which also results in a code base that is very
portable.

Compiler Maturity

In addition to the problems discussed with performance, errors have been found
in a number of compilers. Some versions of the compilers have contained errors
that have prevented them from successfully compiling HEFSS. Also, compiled

38

code will sometimes suffer run-time errors that are specific to the compiler
or its version. Some compiler vendors have been very quick to respond to
compiler bug reports, and others have ignored our requests for resolution of
these errors.

39

Appendix D

Array Storage Performance

! $ld: test_array_storage_performance.fo0,v 1.2 2003/09/08 20:34:47 atkins Exp $
!

! Preliminary stab at testing the relative performance of various

! array types: through argument lists as assumed-size, assumed shape,

! and derived type; and via module data.

module kind_definitions

integer, parameter :: iKind = selected_int_kind(r=8)
integer, parameter :: rKind = selected_real_kind(p=15)

end module kind_definitions

module module_data

use kind_definitions, only: iKind, rKind

implicit none

integer(iKind), save :: module_length
integer(iKind), dimension(:), pointer, save :: module_data_array_int
real(rKind), dimension(:), pointer, save :: module_data_array_real

end module module_data

module type_definition
use kind_definitions, only: iKind, rKind
implicit none

type derived

integer(iKind) :: component_length
integer(iKind), dimension(:), pointer 1 component_array_int
real(rKind), dimension(:), pointer 1 component_array_real

end type derived

end module type_definition

module test_various_array_types

use kind_definitions, only: iKind, rKind

use type_definition, only: derived

use module_data, only: module_data_array_int, module_data_array_real, &
module_length

implicit none
integer, save :: number_of_tests

=0
integer, save :: assumed_size_time = 0
integer, save :: assumed_shape_time = 0

integer, save :: module_data_time = 0

integer, save :: derived_type_time = 0

integer, save :: deref_derived_type_time = 0
contains

subroutine reset_counters()

number_of_tests =0
assumed_size_time = 0
assumed_shape_time = 0
module_data_time =0

derived_type_time = 0
deref_derived_type_time = 0
end subroutine reset_counters

subroutine read_array_types(logical_unit, array_size,

Study Code

&

assumed_size_array_int, assumed_size_array_real, &
assumed_shape_array_int, assumed_shape_array_real,&

derived_type)

integer, intent(in) :: logical_unit
integer, intent(in) o array_size

integer(iKind),dimension(array_size), intent(inout):: assumed_size_array_int
real(rKind), dimension(array_size), intent(inout):: assumed_size_array_real

40

integer(iKind), dimension(:), intent(inout) :: assumed_shape_array_int
real(rKind), dimension(:), intent(inout) :: assumed_shape_array_real

type(derived), intent(inout) :: derived_type

integer(iKind), dimension(:), pointer . dummy_array_int
real(rKind), dimension(:), pointer : dummy_array_real
integer :: i

integer :: start, finish
integer :: size

continue
number_of_tests = number_of_tests + 1

rewind(logical_unit)

call system_clock(start)

read(logical_unit) (assumed_size_array_int(i), i=1,array_size)
read(logical_unit) (assumed_size_array_real(i),i=1,array_size)
call system_clock(finish)

assumed_size_time = assumed_size_time + finish-start

rewind(logical_unit)

call system_clock(start)

read(logical_unit) (assumed_shape_array_int(i), i=1,array_size)
read(logical_unit) (assumed_shape_array_real(i),i=1,array_size)
call system_clock(finish)

assumed_shape_time = assumed_shape_time + finish-start

rewind(logical_unit)

call system_clock(start)

size = module_length

read(logical_unit) (module_data_array_int(i), i=1,size)
read(logical_unit) (module_data_array_real(i),i=1,size)
call system_clock(finish)

module_data_time = module_data_time + finish-start

rewind(logical_unit)

call system_clock(start)

size = derived_type%component_length

read(logical_unit) (derived_type%component_array_int(i), i=1,size)
read(logical_unit) (derived_type%component_array_real(i),i=1,size)
call system_clock(finish)

derived_type_time = derived_type_time + finish-start

rewind(logical_unit)

call system_clock(start)

size = derived_type%component_length

dummy_array_int => derived_type%component_array_int
dummy_array_real => derived_type%component_array_real
read(logical_unit) (dummy_array_int(i), i=1,size)

read(logical_unit) (dummy_array_real(i),i=1,size)

call system_clock(finish)

deref_derived_type_time = deref_derived_type_time + finish-start

rewind(logical_unit)

call system_clock(start)

read(logical_unit) (assumed_size_array_int(i), i=1,array_size)
read(logical_unit) (assumed_size_array_real(i),i=1,array_size)
call system_clock(finish)

assumed_size_time = assumed_size_time + finish-start

end subroutine read_array_types

subroutine work_with_array_types(array_size, &
assumed_size_array_int, assumed_size_array_real, &
assumed_shape_array_int, assumed_shape_array_real, &
derived_type)

integer, intent(in) :: array_size

integer(iKind),dimension(array_size), intent(inout):: assumed_size_array_int
real(rkind), dimension(array_size), intent(inout):: assumed_size_array_real

integer(iKind), dimension(:), intent(inout) :: assumed_shape_array_int
real(rKind), dimension(:), intent(inout) :: assumed_shape_array_real

type(derived), intent(inout) :: derived_type

integer(iKind), dimension(:), pointer ;- dummy_array_int
real(rKind), dimension(:), pointer ;2 dummy_array_real
integer :: i, j

integer :: start, finish
integer :: size

real(rKind) o dot, sum, max_element

41

real(rKind), dimension(:), allocatable :: vector
continue

number_of_tests = number_of_tests + 1
allocate(vector(array_size))

call random_number(vector)

call system_clock(start)
doj=1,5
dot = 0.0_rKind
do i = 1, array_size
dot = dot + assumed_size_array_real(i)*vector(i)
end do
max_element = -huge(max_element)
do i = 1, array_size
if (abs(assumed_size_array_real(i)) > abs(max_element)) &
max_element = assumed_size_array_real(i)
end do
sum = 0.0_rKind
do i = 1, array_size
sum = sum + assumed_size_array_real(i)
end do
do i = 2, array_size
assumed_size_array_real(i) = assumed_size_array_real(i) &
+ assumed_size_array_real(i-1)
end do
do i = 1, array_size
assumed_size_array_real(i) = assumed_size_array_real(i) &
+ assumed_size_array_real(assumed_size_array_int(i))
end do
end do
call system_clock(finish)
assumed_size_time = assumed_size_time + finish-start

call system_clock(start)
doj=1,5
dot = 0.0_rKind
do i = 1, array_size
dot = dot + assumed_shape_array_real(i)*vector(i)
end do
max_element = -huge(max_element)
do i = 1, array_size
if (abs(assumed_shape_array_real(i)) > abs(max_element)) &
max_element = assumed_shape_array_real(i)
end do
sum = 0.0_rKind
do i = 1, array_size
sum = sum + assumed_shape_array_real(i)
end do
do i = 2, array_size
assumed_shape_array_real(i) = assumed_shape_array_real(i) &
+ assumed_shape_array_real(i-1)
end do
do i = 1, array_size
assumed_shape_array_real(i) = assumed_shape_array_real(i) &
+ assumed_shape_array_real(assumed_shape_array_int(i))
end do
end do
call system_clock(finish)
assumed_shape_time = assumed_shape_time + finish-start

call system_clock(start)
doj=1,5
dot = 0.0_rKind
do i = 1, array_size
dot = dot + module_data_array_real(i)*vector(i)
end do
max_element = -huge(max_element)
do i = 1, array_size
if (abs(module_data_array_real(})) > abs(max_element)) &
max_element = module_data_array_real(i)
end do
sum = 0.0_rKind
do i = 1, array_size
sum = sum + module_data_array_real(i)
end do
do i = 2, array_size
module_data_array_real(i) = module_data_array_real(i) &
+ module_data_array_real(i-1)
end do
do i = 1, array_size
module_data_array_real(i) = module_data_array_real(i) &
+ module_data_array_real(module_data_array_int(i))
end do
end do

42

call system_clock(finish)
module_data_time = module_data_time + finish-start

call system_clock(start)
doj=1,5
dot = 0.0_rKind
do i = 1, array_size
dot = dot + derived_type%component_array_real(i)*vector(i)
end do
max_element = -huge(max_element)
do i = 1, array_size
if (abs(derived_type%component_array_real(i)) > abs(max_element)) &
max_element = derived_type%component_array_real(i)

end do
sum = 0.0_rKind
do i = 1, array_size
sum = sum + derived_type%component_array_real(i)
end do
do i = 2, array_size
derived_type%component_array_real(i) &

= derived_type%component_array_real(i) &
+ derived_type%component_array_real(i-1)
end do
do i = 1, array_size
derived_type%component_array_real(i) &
= derived_type%component_array_real(i) &
+ derived_type%component_array_real(derived_type%component_array_int(i))
end do
end do
call system_clock(finish)
derived_type_time = derived_type_time + finish-start

call system_clock(start)

size = derived_type%component_length

dummy_array_int => derived_type%component_array_int
dummy_array_real => derived_type%component_array_real

doj=1,5
dot = 0.0_rKind
do i = 1, size
dot = dot + dummy_array_real(i)*vector(i)
end do
max_element = -huge(max_element)
do i = 1, size

if (abs(dummy_array_real(i)) > abs(max_element)) &
max_element = dummy_array_real(i)

end do
sum = 0.0_rKind
do i = 1, size
sum = sum + dummy_array_real(i)
end do
do i = 2, size
dummy_array_real(i) &

= dummy_array_real(i) &
+ dummy_array_real(i-1)
end do
do i = 1, size
dummy_array_real(i) &
= dummy_array_real(i) &
+ dummy_array_real(dummy_array_int(i))
end do
end do
call system_clock(finish)
deref_derived_type_time = deref_derived_type_time + finish-start

end subroutine work_with_array_types

end module test_various_array_types

program test_array_storage_performance

use kind_definitions, only: iKind, rKind

use type_definition, only: derived

use module_data, only: module_data_array_int, module_data_array_real, &
module_length

use test_various_array_types, only: read_array_types, &
work_with_array_types, &
reset_counters, &

assumed_size_time, &
assumed_shape_time, &
module_data_time, &
derived_type_time, &
deref_derived_type_time
implicit none
integer, parameter :: logical_unit =1

43

integer, parameter :: number_of_runs = 10
integer o array_size = 20000

integer(iKind), dimension(:), allocatable, target :: assumed_size_array_int
real(rKind), dimension(:), allocatable, target :: assumed_size_array_real

integer(iKind), dimension(:), allocatable :: assumed_shape_array_int
real(rKind), dimension(:), allocatable :: assumed_shape_array_real

type(derived) :: derived_type
integer i, ii
continue
do ii=1, 3
write(*,*) " timings for array length ",array_size
allocate(assumed_size_array_int(array_size), &
assumed_size_array_real(array_size))
! allocate(assumed_shape_array_int(array_size), &
! assumed_shape_array_real(array_size))
module_length = array_size
allocate(module_data_array_int(array_size), &

module_data_array_real(array_size))

! allocate(derived_type%component_array_int(array_size), &
! derived_type%component_array_real(array_size))

derived_type%component_length = array_size
derived_type%component_array_int => assumed_size_array_int
derived_type%component_array_real => assumed_size_array_real
open (logical_unit, file="data’, form="unformatted’)

write (logical_unit) ((array_size-i+1), i=1,array_size)

write (logical_unit) (1.0_rKind, i=1,array_size)
do i = 1, number_of_runs
call read_array_types(logical_unit, array_size, &

! assumed_size_array_int, assumed_size_array_real, &
derived_type%component_array_int, derived_type%component_array_real, &
! assumed_shape_array_int, assumed_shape_array_real, &
derived_type%component_array_int, derived_type%component_array_real, &
derived_type)
end do

close (logical_unit)

write(*,*) 'lO tests:’

write(*,*) Assumed-size:’, assumed_size_time

write(*,*) Assumed-size:’, assumed_size_time / real(assumed_size_time)
write(*,*) Assumed-shape:’, assumed_shape_time / real(assumed_size_time)
write(*,*) Use Module:’, module_data_time / real(assumed_size_time)
write(*,*) Derived type:’, derived_type_time / real(assumed_size_time)

write(*,*) ' DeRef-Derived type:’, deref_derived_type_time / real(assumed_size_time)

call reset_counters()

do i = 1, number_of_runs
call work_with_array_types(array_size, &
! assumed_size_array_int, assumed_size_array_real, &
derived_type%component_array_int, derived_type%component_array_real, &
! assumed_shape_array_int, assumed_shape_array_real, &
derived_type%component_array_int, derived_type%component_array_real, &
derived_type)
end do

write(*,*) 'Work tests:’

write(*,*) Assumed-size:’, assumed_size_time

write(*,*) Assumed-size:’, assumed_size_time / real(assumed_size_time)
write(*,*) Assumed-shape:’, assumed_shape_time / real(assumed_size_time)
write(*,*) ’ Use Module’, module_data_time / real(assumed_size_time)
write(*,*) * Derived type:’, derived_type_time / real(assumed_size_time)

write(*,*) ' DeRef-Derived type:’, deref_derived_type_time / real(assumed_size_time)
deallocate(assumed_size_array_int, assumed_size_array_real)

! deallocate(assumed_shape_array_int, assumed_shape_array_real)
deallocate(module_data_array_int, module_data_array_real)

! deallocate(derived_type%component_array_int, &
! derived_type%component_array_real)

44

array_size = array_size*10
end do

end program test_array_storage_performance

45

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports
(0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be
subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE
01-11-2003

Technical Memorandum

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

Team Software Development for Aerothermodynamic and

Aerodynamic Analysis and Design

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

N. Alexandrov, H. L. Atkins, K. L. Bibb, R. T. Biedron,

. H. Carpenter, P. A. Gnoffo, D. P. Hammond, W. T. Jones,
. L. Kleb, E. M. Lee-Rausch, E. J. Nielsen, M. A. Park,

. V. Raman, T. W. Roberts, J. L. Thomas, V. N. Vatsa,
A.

w<zz

Viken, J. A. White, and W. A. Wood

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER
762-20-21-80

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
NASA Langley Research Center
Hampton, VA 23681-2199

8. PERFORMING ORGANIZATION
REPORT NUMBER

L-18296

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
National Aeronautics and Space Administration
Washington, DC 20546-0001

10. SPONSOR/MONITOR'S ACRONYM(S)
NASA

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

NASA/TM-2003-212421

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified-Unlimited

Subject Category 61

Availability: NASA CAST (301) 621-0390

Distribution: Standard

13. SUPPLEMENTARY NOTES

An electronic version can be found at http://techreports.larc.nasa.gov/ltrs/ or http://techreports.larc.nasa.gov/cgi-bin/NTRS.

14. ABSTRACT

A collaborative approach to software development is described. The approach employs the agile development
techniques: project retrospectives, Scrum status meetings, and elements of Extreme Programming to efficiently
develop a cohesive and extensible software suite. The software product under development is a fluid dynamics
simulator for performing aerodynamic and aerothermodynamic analysis and design. The functionality of the
software product is achieved both through the merging, with substantial rewrite, of separate legacy codes and the
authorship of new routines. Examples of rapid implementation of new functionality demonstrate the benefits
obtained with this agile software development process. The appendix contains a discussion of coding issues
encountered while porting legacy FORTRAN 77 code to FORTRAN 95, software design principles, and a FORTRAN 95

coding standard.

15. SUBJECT TERMS

Software engineering; Programming; Programming languages; Computer software; Coding techniques; Software
debugging; Computer programming; Aerodynamics; Aerothermodynamics; Design; Multidisciplinary optimization

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

a. REPORT b. ABSTRACT |c. THIS PAGE ABSTRACT

U U U Uuu

18. NUMBER | 19a. NAME OF RESPONSIBLE PERSON
OF . .
PAGES STT Help Desk (email: help@sti.nasa.gov)

19b. TELEPHONE NUMBER (Include area code)
50 (301) 621-0390

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

	Introduction
	Team Obstacles
	Collaborative Software Development
	Extreme Programming
	Sustainable Pace Productivity does not increase with hours worked; tired programmers are less productive than well-rested ones.
	Metaphor Guide all development with a simple shared story of how the whole system works.
	Coding Standards Programmers write all code in accordance with rules emphasizing communication through the code.
	Collective Ownership Anyone can change any code anywhere in the system at any time.
	Continuous Integration Integrate and build the system many times a day, every time a task is completed.
	Small Releases Put a simple system into production quickly, then release new versions on a very short cycle.
	Test-Driven Development Programmers continually write unit tests, which must run flawlessly for development to continue. Customers write tests demonstrating that features are finished. Any program feature without an automated test simply doesn't exist.
	Refactoring Programmers restructure the system without changing its behavior to remove duplication, improve communication, simplify, or add flexibility.
	Simple Design The system should be designed as simply as possible at any given moment; extra complexity is removed as soon as it is discovered.
	Pair Programming All production code is written with two programmers at one machine.
	On-Site Customer Include a real, live user on the team, available full-time to answer questions.
	The Planning Game Quickly determine the scope of the next release by combining business priorities and technical estimates; as reality overtakes the plan, update the plan.

	Project Retrospectives
	Scrum Status Meetings
	Other Communication Mechanisms
	Documentation

	Experience Adding New Functionality
	Time-Accurate Simulations
	Incorporating Multiple Element Types
	Two-Dimensional Capability
	Multigrid Algorithms
	Incorporating High-Energy Physics
	Adjoint Solver and Sensitivity Analysis
	Design Optimization
	Output Error Correction and Grid Adaptation

	Concluding Remarks
	Colophon
	Baseline Code Selection
	Programming Language
	Porting and Restructuring
	Modularity and Encapsulation
	Memory allocation
	Parallel Communication
	Boundary Conditions
	Gas Physics

	Style
	Comments
	Variable Declarations
	Module Headers
	Subroutines and Functions
	Control Constructs
	Miscellaneous
	Illustrative Example
	Best Practices
	Performance Considerations
	Data Sharing With Modules
	Derived Types
	Assumed-Shape Arrays
	Memory Copies
	Compilation Errors, Warnings, and Information
	Compiler Maturity

